Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 913: 169786, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181954

RESUMO

Calcium ions (Ca2+) and magnesium ions (Mg2+) are pivotal in the community composition and stability of harmful cyanobacteria, yet the physiological and molecular responses remains poorly understood. This study aims to explore these responses in the high microcystin producer Microcystis aeruginosa (M. aeruginosa). Results indicate that the growth of M. aeruginosa is inhibited by Ca2+/Mg2+ exposure (0.5-10 mM), while Fv/Fm photosynthetic parameters and extracellular microcystin-leucine-arginine (MC-LR) concentrations increase. Additionally, MC-LR release is significantly elevated under exposure to Ca2+/Mg2+, posing potential aquatic environmental risks. Transcriptomic analysis reveals downregulation of genes related to cell architecture, membrane transport, and metabolism, while the genes linked to photosynthesis electron transmission and heavy metal-responsive transcriptional regulators are upregulated to adapt to environmental changes. Further analysis reveals that Ca2+ and Mg2+ primarily impact sulfur metabolism and transport of amino acids and mineral within cells. These findings provide insights into M. aeruginosa cells responses to Ca2+ and Mg2+ exposure.


Assuntos
Microcystis , Microcystis/fisiologia , Cálcio/metabolismo , Magnésio , Microcistinas/metabolismo , Perfilação da Expressão Gênica , Íons/metabolismo
2.
Comput Struct Biotechnol J ; 21: 4816-4824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841329

RESUMO

Confronting the challenge of persistent mutations of SARS-CoV-2, researchers have turned to deep learning methods to predict the mutated structures of spike proteins and to hypothesize potential changes in their structures and drug efficacies. However, limited works are focused on the surface learning of spike proteins even though their biological functions are usually defined by the geometric and chemical features of 3D molecular surfaces. In addition, the current used geometric deep learning methods are based on mesh representations of proteins to identify potential binding targets for drugs. However, the use of meshes has limitations and is not applicable for many important tasks in molecular biology. To address these limitations, we adopt the differentiable molecular surface interaction fingerprinting (dMaSIF) method which is based on the 3D point clouds and a novel efficient geometric convolutional layer to fast predict the interaction sites on the protein surface. The different binding site patterns for Delta, Omicron and its subvariants are clearly visualized. We find that Delta and Omicron show the similar surface binding patterns while BA.2, BA.2.13, BA.3 and BA.4 present similar ones. BA.4 possesses higher positive interaction site ratio than the others which may account for its higher transmission and infection among humans. In addition, the positive interaction site ratios of BA.2, BA.2.13, BA.3 are higher than Delta and Omicron, which are accordant with their transmission and infection rates. Hopefully our work offers a new effective route to analyze the protein-protein interaction for the SARS-CoV-2 variants.

3.
iScience ; 24(7): 102766, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34286232

RESUMO

Inflammaging is associated with an increased risk of chronic disease. Monocytes are the principal immune cells for the production of inflammatory cytokines and contribute to inflammaging in the elderly. However, the underlying mechanisms remain largely unknown. Here, we found that monocytes from aged individuals contained high levels of lipid droplets (LDs), and this increase was correlated with impaired fatty acid oxidation. Downregulated peroxisome proliferator-activated receptor (PPAR)-α may be responsible for the pro-inflammatory phenotype of monocytes in aged individuals, as it was positively correlated with LD accumulation and increasing TNF-α concentration. Interestingly, interventions that result in PPAR-α upregulation, such as fenofibrate treatment, TNF-α neutralization, or calorie restriction, reversed the effect of aging on monocytes. Thus the downregulation of PPAR-α and LD levels in monocytes represents a novel biomarker for inflammaging. Furthermore, PPAR-α activation in the elderly may also alleviate long-term inflammaging, preventing the development of life-limiting chronic diseases.

4.
Life Sci ; 256: 117955, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32534038

RESUMO

AIMS: Cancer associated fibroblasts (CAFs) play a crucial role in lung tumor development, but the underlying mechanism is still not fully understood. MAIN METHODS: SCRIB expression in the CAFs of human lung cancer tissues was examined by immunohistochemistry (IHC). A coculture of mouse Lewis lung cancer cells (LLC) and fibroblasts was used to investigate SCRIB expression in cocultured fibroblasts. Proliferation, scratch wound, and transwell assays were used to examine the proliferation, migration and invasion ability of SCRIB knockdown fibroblasts and their effects on LLC. A 3D-coculture system and co-injection xenograft model were used to examine LLC invasion. RNA sequencing and transwell experiments were used to explore the molecules that may participate in LLC invasion. KEY FINDINGS: Herein, we found that the low expression of SCRIB in CAFs is correlated with advanced tumor stages and poor survival for human lung squamous cell carcinoma. SCRIB expression in fibroblasts is drastically downregulated by LLC cells. SCRIB knockdown fibroblasts not only enhance invasion but also facilitate LLC invasion in a 3D-coculture system and in an in vivo subcutaneous transplantation model. The upregulation of asporin in SCRIB knockdown fibroblasts is involved in LLC invasion in vitro. SIGNIFICANCE: Collectively, the results indicate that fibroblasts with low SCRIB expression promote lung cancer cell invasion, which suggests that the downregulated expression of SCRIB may represent one of the important characteristics of tumor-promoting CAFs in lung squamous cell cancer.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteínas Supressoras de Tumor/genética , Animais , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Regulação para Baixo/genética , Proteínas da Matriz Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Invasividade Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Neuroscience ; 416: 20-29, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31356897

RESUMO

In the adult hippocampal dentate gyrus (DG), the majority of newly generated cells are eliminated by apoptotic mechanisms. The apoptosis repressor with caspase recruitment domain (ARC), encoded by the Nol3 gene, is a potent and multifunctional death repressor that inhibits both death receptor and mitochondrial apoptotic signaling. The aim of the present study was to parse the role of ARC in the development of new granule cell neurons. Nol3 gene expression as revealed by in situ hybridization is present in the entire dentate granule cell layer. Moreover, a comparison of Nol3 expression between FACS-sorted Sox2-positive neural stem cells and Doublecortin (DCX)-positive immature neurons demonstrates upregulation of Nol3 during neurogenesis. Using ARC-deficient mice, we show that proliferation and survival of BrdU birth-dated cells are strongly reduced in the absence of ARC while neuronal-glial fate choice is not affected. Both the number of DCX-positive cells and the number of calretinin (CR)-positive immature postmitotic neurons are reduced in the hippocampus of ARC-/- mice. ARC knockout is not associated with increased numbers of microglia or with microglia activation. However, hippocampal brain-derived neurotrophic factor (BDNF) protein content is significantly increased in ARC-/- mice, possibly representing a compensatory response. Collectively, our results suggest that ARC plays a critical cell-autonomous role in preventing cell death during adult granule cell neogenesis.


Assuntos
Apoptose/fisiologia , Domínio de Ativação e Recrutamento de Caspases/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Complexo Relacionado com a AIDS/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Proteína Duplacortina , Hipocampo/metabolismo , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo
6.
Sci Rep ; 9(1): 3183, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816308

RESUMO

Phosphatase and tensin homolog (PTEN) signalling might influence neuronal survival after brain ischemia. However, the influence of the less studied longer variant termed PTEN-L (or PTENα) has not been studied to date. Therefore, we examined the translational variant PTEN-L in the context of neuronal survival. We identified PTEN-L by proteomics in murine neuronal cultures and brain lysates and established a novel model to analyse PTEN or PTEN-L variants independently in vitro while avoiding overexpression. We found that PTEN-L, unlike PTEN, localises predominantly in the cytosol and translocates to the nucleus 10-20 minutes after glutamate stress. Genomic ablation of PTEN and PTEN-L increased neuronal susceptibility to oxygen-glucose deprivation. This effect was rescued by expression of either PTEN-L indicating that both PTEN isoforms might contribute to a neuroprotective response. However, in direct comparison, PTEN-L replaced neurons were protected against ischemic-like stress compared to neurons expressing PTEN. Neurons expressing strictly nuclear PTEN-L NLS showed increased vulnerability, indicating that nuclear PTEN-L alone is not sufficient in protecting against stress. We identified mutually exclusive binding partners of PTEN-L or PTEN in cytosolic or nuclear fractions, which were regulated after ischemic-like stress. GRB2-associated-binding protein 2, which is known to interact with phosphoinositol-3-kinase, was enriched specifically with PTEN-L in the cytosol in proximity to the plasma membrane and their interaction was lost after glutamate exposure. The present study revealed that PTEN and PTEN-L have distinct functions in response to stress and might be involved in different mechanisms of neuroprotection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Isquemia Encefálica/genética , Encéfalo/metabolismo , PTEN Fosfo-Hidrolase/genética , Acidente Vascular Cerebral/genética , Animais , Encéfalo/patologia , Isquemia Encefálica/patologia , Núcleo Celular/genética , Modelos Animais de Doenças , Proteína Adaptadora GRB2/genética , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção/genética , Oxigênio/metabolismo , Isoformas de Proteínas/genética , Proteômica/métodos , Transdução de Sinais/genética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
7.
J Neurosci ; 36(31): 8132-48, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27488634

RESUMO

UNLABELLED: The aim of this study was to explore the signaling and neuroprotective effect of transactivator of transcription (TAT) protein transduction of the apoptosis repressor with CARD (ARC) in in vitro and in vivo models of cerebral ischemia in mice. In mice, transient focal cerebral ischemia reduced endogenous ARC protein in neurons in the ischemic striatum at early reperfusion time points, and in primary neuronal cultures, RNA interference resulted in greater neuronal susceptibility to oxygen glucose deprivation (OGD). TAT.ARC protein delivery led to a dose-dependent better survival after OGD. Infarct sizes 72 h after 60 min middle cerebral artery occlusion (MCAo) were on average 30 ± 8% (mean ± SD; p = 0.005; T2-weighted MRI) smaller in TAT.ARC-treated mice (1 µg intraventricularly during MCAo) compared with controls. TAT.ARC-treated mice showed better performance in the pole test compared with TAT.ß-Gal-treated controls. Importantly, post-stroke treatment (3 h after MCAo) was still effective in affording reduced lesion volume by 20 ± 7% (mean ± SD; p < 0.05) and better functional outcome compared with controls. Delayed treatment in mice subjected to 30 min MCAo led to sustained neuroprotection and functional behavior benefits for at least 28 d. Functionally, TAT.ARC treatment inhibited DAXX-ASK1-JNK signaling in the ischemic brain. ARC interacts with DAXX in a CARD-dependent manner to block DAXX trafficking and ASK1-JNK activation. Our work identifies for the first time ARC-DAXX binding to block ASK1-JNK activation as an ARC-specific endogenous mechanism that interferes with neuronal cell death and ischemic brain injury. Delayed delivery of TAT.ARC may present a promising target for stroke therapy. SIGNIFICANCE STATEMENT: Up to now, the only successful pharmacological target of human ischemic stroke is thrombolysis. Neuroprotective pharmacological strategies are needed to accompany therapies aiming to achieve reperfusion. We describe that apoptosis repressor with CARD (ARC) interacts and inhibits DAXX and proximal signals of cell death. In a murine stroke model mimicking human malignant infarction in the territory of the middle cerebral artery, TAT.ARC salvages brain tissue when given during occlusion or 3 h delayed with sustained functional benefits (28 d). This is a promising novel therapeutic approach because it appears to be effective in a model producing severe injury by interfering with an array of proximal signals and effectors of the ischemic cascade, upstream of JNK, caspases, and BIM and BAX activation.


Assuntos
Apoptose , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Produtos do Gene tat/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas Correpressoras , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares , Ligação Proteica , Mapas de Interação de Proteínas
8.
Comp Biochem Physiol C Toxicol Pharmacol ; 157(4): 337-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23474502

RESUMO

The chicken (Gallus gallus) is one of the most economically important domestic animals and also an avian model species. Chickens have two CYP1A genes (CYP1A4 and CYP1A5) which are orthologous to mammalian CYP1A1 and CYP1A2. Although the importance of chicken CYP1As in metabolism of endogenous compounds and xenobiotics is well recognized, their enzymatic properties, substrate preference and inhibitor selectivity remain poorly understood. In this study, functional enzymes of chicken CYP1A4 and CYP1A5 were successfully produced in Escherichia coli (E. coli). The substrate preference and inhibitor specificity of the two chicken CYP1As were compared. Kinetic results showed that the enzymatic parameters (K(m), V(max), V(max)/K(m)) for ethoxyresorufin O-deethylase (EROD) and benzyloxyresorufin O-debenzylase (BROD) differed between CYP1A4 and CYP1A5, while no significant difference was observed for methoxyresorufin O-demethylase (MROD). Lower K(m) of CYP1A4 for BROD suggests that CYP1A4 has a greater binding affinity to benzyloxyresorufin than either ethoxyresorufin or methoxyresorufin. The highest V(max)/K(m) ratio was seen in BROD activity for CYP1A4 and in MROD for CYP1A5 respectively. These results indicate that substrate preference of chicken CYP1As is more notably distinguished by BROD activity and CYP1A5 prefers shorter alkoxyresorufins resembling its mammalian ortholog CYP1A2. Differential patterns of MROD inhibition were observed between CYP1As and among the five CYP inhibitors (α-naphthoflavone, furafylline, piperonyl butoxide, erythromycin and ketoconazole). α-Naphthoflavone was determined to be a potent MROD inhibitor of both CYP1A4 and CYP1A5. In contrast, no or only a trace inhibitory effect (<15%) was observed by erythromycin at a concentration of 500 µM. Stronger inhibition of MROD activity was found in CYP1A5 than CYP1A4 by relatively small molecules α-naphthoflavone, piperonyl butoxide and furafylline. AROD kinetics and inhibition profiles between chicken CYP1A4 and CYP1A5 demonstrate that the two paralogous members of the CYP1A subfamily have distinct enzymatic properties, reflecting differences in the active site geometry between CYP1A4 and CYP1A5. These findings suggest that CYP1A4 and CYP1A5 play partially overlapping but distinctly different physiological and toxicological roles in the chicken.


Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Proteínas Aviárias/antagonistas & inibidores , Galinhas/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Proteínas Aviárias/metabolismo , Domínio Catalítico , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP2B1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ativação Enzimática , Ensaios Enzimáticos , Inibidores Enzimáticos/metabolismo , Eritromicina/metabolismo , Escherichia coli/metabolismo , Oxazinas/metabolismo , Butóxido de Piperonila/metabolismo , Ligação Proteica , Especificidade por Substrato , Teofilina/análogos & derivados , Teofilina/metabolismo
9.
J Hepatol ; 58(2): 297-305, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23046676

RESUMO

BACKGROUND & AIMS: Acetaminophen (AAP) overdose is the most frequent cause of drug-induced liver failure. c-Jun N-terminal kinase (JNK) is thought to play a central role in AAP-induced hepatocellular necrosis. The apoptosis repressor with caspase recruitment domain (ARC) is a death repressor that inhibits death receptor and mitochondrial apoptotic signaling. Here, we investigated ARC's therapeutic effect and molecular mechanisms on AAP-induced hepatocellular necrosis. METHODS: We tested the in vivo and in vitro effects of ARC fused with the transduction domain of HIV-1 (TAT-ARC) on murine AAP hepatotoxicity. RESULTS: Treatment with TAT-ARC protein completely abrogated otherwise lethal liver failure induced by AAP overdose in C57BL/6 mice. AAP triggered caspase-independent necrosis, as evidenced by liver histology, elevated serum transaminases, and secreted HMGB1 that was inhibited by ARC. ARC-mediated hepatoprotection was not caused by an alteration of AAP metabolism, but resulted in reduced oxidative stress. AAP overdose led to induction of RIP-dependent signaling with subsequent JNK activation. Ectopic ARC inhibited JNK activation by specific interactions between ARC and JNK1 and JNK2. Importantly, survival of mice was even preserved when ARC therapy was initiated in a delayed manner after AAP administration. CONCLUSIONS: This work identifies for the first time ARC-JNK-binding with subsequent inhibition of JNK signaling as a specific mechanism of ARC to interfere with AAP-dependent necrosis. Our data suggests that AAP-mediated induction of RIP signaling serves as a critical switch for hepatocellular necrosis. The efficacy of TAT-ARC protein transduction in murine AAP hepatotoxicity suggests its therapeutic potential for reversing AAP intoxication also in humans.


Assuntos
Acetaminofen/efeitos adversos , Proteínas Reguladoras de Apoptose/uso terapêutico , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Musculares/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Proteínas Reguladoras de Apoptose/farmacologia , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Glutationa/metabolismo , HIV-1 , Neoplasias Hepáticas/patologia , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/farmacologia , Necrose/induzido quimicamente , Necrose/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
10.
Hepatology ; 56(2): 715-26, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22392694

RESUMO

UNLABELLED: Acute liver failure (ALF) is associated with massive hepatocyte cell death and high mortality rates. Therapeutic approaches targeting hepatocyte injury in ALF are hampered by the activation of distinct stimulus-dependent pathways, mechanism of cell death, and a limited therapeutic window. The apoptosis repressor with caspase recruitment domain (ARC) is a recently discovered death repressor that inhibits both death receptor and mitochondrial apoptotic signaling. Here, we investigated the in vivo effects of ARC fused with the transduction domain of human immunodeficiency virus 1 (HIV-1) (TAT-ARC) on Fas- and tumor necrosis factor (TNF)-mediated murine models of fulminant liver failure. Treatment with TAT-ARC protein completely abrogated otherwise lethal liver failure induced by Fas-agonistic antibody (Jo2), concanavalin A (ConA), or D-galactosamine/lipopolysaccharide (GalN/LPS) administration. Importantly, survival of mice was even preserved when TAT-ARC therapy was initiated in a delayed manner after stimulation with Jo2, ConA, or GalN/LPS. ARC blocked hepatocyte apoptosis by directly interacting with members of the death-inducing signaling complex. TNF-mediated liver damage was inhibited by two independent mechanisms: inhibition of jun kinase (JNK)-mediated TNF-α expression and prevention of hepatocyte apoptosis by inhibition of both death receptor and mitochondrial death signaling. We identified JNK as a novel target of ARC. ARC's caspase recruitment domain (CARD) directly interacts with JNK1 and JNK2, which correlates with decreased JNK activation and JNK-dependent TNF-α production. CONCLUSION: This work suggests that ARC confers hepatoprotection upstream and at the hepatocyte level. The efficacy of TAT-ARC protein transduction in multiple murine models of ALF demonstrates its therapeutic potential for reversing liver failure.


Assuntos
Proteínas do Citoesqueleto/genética , Terapia Genética/métodos , Falência Hepática Aguda/genética , Falência Hepática Aguda/terapia , Proteínas do Tecido Nervoso/genética , Proteínas Recombinantes de Fusão/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Animais , Apoptose/fisiologia , Caspases/química , Caspases/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hepatócitos/citologia , Hepatócitos/fisiologia , Falência Hepática Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Estrutura Terciária de Proteína , Transdução Genética/métodos , Fator de Necrose Tumoral alfa/metabolismo
11.
J Mol Med (Berl) ; 87(4): 401-10, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19139834

RESUMO

Despite its complexity of action, doxorubicin (Dox)-induced cardiomyopathy eventually results in loss of cardiac myocytes which further contributes to the development of overt heart failure. In the present study, we examined the relevance of the apoptosis repressor with caspase recruitment domain (ARC) on cardiac myocyte survival and its underlying mechanisms in a model of Dox-induced cardiotoxicity. Exposure of neonatal rat ventricular cardiomyocytes with Dox resulted in a downregulation of ARC mRNA and protein levels that occurred in a pre-translational and post-translational manner and led to a significant induction of apoptosis. Proteasomal inhibitors partially rescued both Dox-induced downregulation of ARC protein and induction of apoptosis. Knockdown of endogenous ARC sensitised cardiomyocytes to undergo apoptosis upon treatment with Dox. In contrast, enforced expression of ARC by adenoviral-mediated gene transfer dramatically increased the resistance of cardiomyocytes to undergo apoptotic cell death following Dox administration. In response to Dox, Bax translocated from cytosol to mitochondria where it resulted in dissipation of the mitochondrial membrane potential, cytochrome c release and activation of caspases -3 and -9. ARC prevented Bax translocation to the mitochondrium and thereby blocked the activation of the mitochondrial apoptotic death pathway in a t-Bid and caspase-8-independent manner. In this study, we provide evidence for the protective role of anti-apoptotic ARC in Dox-induced cardiotoxicity, which makes this molecule an interesting target for future therapies.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Doxorrubicina/farmacologia , Proteínas Musculares/genética , Miócitos Cardíacos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocromos c/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica/efeitos dos fármacos , Immunoblotting , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas Musculares/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Nat Med ; 14(3): 315-24, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18311148

RESUMO

p27(Kip1) (p27) blocks cell proliferation through the inhibition of cyclin-dependent kinase-2 (Cdk2). Despite its robust expression in the heart, little is known about both the function and regulation of p27 in this and other nonproliferative tissues, in which the expression of its main target, cyclin E-Cdk2, is known to be very low. Here we show that angiotensin II, a major cardiac growth factor, induces the proteasomal degradation of p27 through protein kinase CK2-alpha'-dependent phosphorylation. Conversely, unphosphorylated p27 potently inhibits CK2-alpha'. Thus, the p27-CK2-alpha' interaction is regulated by hypertrophic signaling events and represents a regulatory feedback loop in differentiated cardiomyocytes analogous to, but distinct from, the feedback loop arising from the interaction of p27 with Cdk2 that controls cell proliferation. Our data show that extracellular growth factor signaling regulates p27 stability in postmitotic cells, and that inactivation of p27 by CK2-alpha' is crucial for agonist- and stress-induced cardiac hypertrophic growth.


Assuntos
Caseína Quinase II/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/metabolismo , Envelhecimento , Angiotensina II/farmacologia , Animais , Cardiomegalia/genética , Caseína Quinase II/genética , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Inibidor de Quinase Dependente de Ciclina p27/genética , Humanos , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ligação Proteica , Ratos , Transdução de Sinais
13.
J Neurosci ; 27(17): 4562-71, 2007 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-17460069

RESUMO

The role of glucocorticoids in the regulation of apoptosis remains incongruous. Here, we demonstrate that corticosterone protects neurons from apoptosis by a mechanism involving the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). In primary cortical neurons, corticosterone leads to a dose- and Akt-kinase-dependent upregulation with enhanced phosphorylation and cytoplasmic appearance of p21(Waf1/Cip1) at Thr 145. Exposure of neurons to the neurotoxin ethylcholine aziridinium (AF64A) results in activation of caspase-3 and a dramatic loss of p21(Waf1/Cip1) preceding apoptosis in neurons. These effects of AF64A are reversed by pretreatment with corticosterone. Corticosterone-mediated upregulation of p21(Waf1/Cip1) and neuroprotection are completely abolished by glucocorticoid and mineralocorticoid receptor antagonists as well as inhibitors of PI3- and Akt-kinase. Both germline and somatically induced p21(Waf1/Cip1) deficiency abrogate the neuroprotection by corticosterone, whereas overexpression of p21(Waf1/Cip1) suffices to protect neurons from apoptosis. We identify p21(Waf1/Cip1) as a novel antiapoptotic factor for postmitotic neurons and implicate p21(Waf1/Cip1) as the molecular target of neuroprotection by high-dose glucocorticoids.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Glucocorticoides/farmacologia , Neurônios/enzimologia , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Citoplasma/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
14.
Circ Res ; 100(1): 50-60, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17158337

RESUMO

Statins are widely used clinical drugs that exert beneficial growth-suppressive effects in patients with cardiac hypertrophy. We investigated the role of the cell cycle inhibitor p21(CIP1/WAF1) (p21) in statin-dependent inhibition of hypertrophic growth in postmitotic cardiomyocytes. We demonstrate that lovastatin fails to inhibit cardiac hypertrophy to angiotensin II in p21(-/-) mice and that reconstitution of p21 function by TAT.p21 protein transduction can rescue statin action in these otherwise normally developed animals. Lovastatin specifically recruits the forkhead box FoxO3a transcription factor to the p21 promoter, mediating transcriptional transactivation of the p21 gene as analyzed in isolated primary cardiomyocytes. Lovastatin also stimulates protein kinase B/Akt kinase activity, and Akt-dependent phosphorylation forces p21 in the cytoplasm, where it inhibits Rho-kinases contributing to the suppression of cardiomyocyte hypertrophy. Loss of p21 or FoxO3a by RNA interference causes a general inhibition of lovastatin signal transduction. These results suggest that p21 functions as FoxO3a downstream target to mediate an statin-derived anti-hypertrophic response. Taken together, our genetic and biochemical data delineate an essential function of p21 for statin-dependent inhibition of cardiac myocyte hypertrophy.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Citoplasma/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/efeitos dos fármacos , Fatores de Transcrição Forkhead/fisiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipertrofia/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Lovastatina/antagonistas & inibidores , Lovastatina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Interferência de RNA , Ratos , Transcrição Gênica/fisiologia , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...